首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3429篇
  免费   221篇
  国内免费   230篇
  2023年   2篇
  2021年   10篇
  2020年   2篇
  2019年   14篇
  2018年   13篇
  2017年   11篇
  2016年   12篇
  2015年   11篇
  2014年   32篇
  2013年   27篇
  2012年   481篇
  2011年   455篇
  2010年   68篇
  2009年   40篇
  2008年   381篇
  2007年   376篇
  2006年   322篇
  2005年   332篇
  2004年   311篇
  2003年   209篇
  2002年   167篇
  2001年   160篇
  2000年   162篇
  1999年   83篇
  1998年   25篇
  1997年   17篇
  1996年   22篇
  1995年   16篇
  1994年   10篇
  1993年   17篇
  1992年   6篇
  1991年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1982年   2篇
  1980年   2篇
  1959年   2篇
  1958年   4篇
  1957年   2篇
  1956年   7篇
  1955年   6篇
  1954年   10篇
  1953年   8篇
  1952年   5篇
  1951年   3篇
  1950年   4篇
  1949年   2篇
  1948年   3篇
排序方式: 共有3880条查询结果,搜索用时 187 毫秒
991.
Cerium (Ce) was shown to cause various toxic effects both in rats and mice; however, the molecular mechanism by which Ce exert theirs toxicity is still understood. In this report, the impairment of liver DNA conformation and liver apoptosis of mice caused by CeCl3 was studied in vivo using inductively coupled plasma–mass spectrometry, various spectral methods, gel electrophoresis, and transmission electron micrograph. We found that the coefficients of liver to body weight of the mice treated with CeCl3 were significantly increased. Ce3+ could be significantly accumulated in the liver, and it insert itself into DNA base pairs and/or bind to DNA nucleotide, and alter the conformation of DNA. Furthermore, the evaluation by gel electrophoresis and transmission electron micrograph showed that higher dose of Ce3+ could cause DNA cleavage and hepatocyte apoptosis in mice. Therefore, our study aroused the attention of Ce application and exposure effects especially on human liver for long-term and low-dose treatment.  相似文献   
992.
The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes.  相似文献   
993.
Li Q  Zhao Z  Zhou D  Chen Y  Hong W  Cao L  Yang J  Zhang Y  Shi W  Cao Z  Wu Y  Yan H  Li W 《Peptides》2011,32(7):1518-1525
Outbreaks of SARS-CoV, influenza A (H5N1, H1N1) and measles viruses in recent years have raised serious concerns about the measures available to control emerging and re-emerging infectious viral diseases. Effective antiviral agents are lacking that specifically target RNA viruses such as measles, SARS-CoV and influenza H5N1 viruses, and available vaccinations have demonstrated variable efficacy. Therefore, the development of novel antiviral agents is needed to close the vaccination gap and silence outbreaks. We previously indentified mucroporin, a cationic host defense peptide from scorpion venom, which can effectively inhibit standard bacteria. The optimized mucroporin-M1 can inhibit gram-positive bacteria at low concentrations and antibiotic-resistant pathogens. In this investigation, we further tested mucroporin and the optimized mucroporin-M1 for their antiviral activity. Surprisingly, we found that the antiviral activities of mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses were notably increased with an EC50 of 7.15 μg/ml (3.52 μM) and a CC50 of 70.46 μg/ml (34.70 μM) against measles virus, an EC50 of 14.46 μg/ml (7.12 μM) against SARS-CoV and an EC50 of 2.10 μg/ml (1.03 μM) against H5N1, while the original peptide mucroporin showed no antiviral activity against any of these three viruses. The inhibition model could be via a direct interaction with the virus envelope, thereby decreasing the infectivity of virus. This report provides evidence that host defense peptides from scorpion venom can be modified for antiviral activity by rational design and represents a practical approach for developing broad-spectrum antiviral agents, especially against RNA viruses.  相似文献   
994.
Shim S  Hong SH  Tak Y  Yoon J 《Biofouling》2011,27(2):217-224
The process of controlling bacterial adhesion using an electric current deserves attention because of its ease of automation and environmentally friendly nature. This study investigated the role of electric currents (negative, positive, alternating) for preventing adhesion of Pseudomonas aeruginosa and achieving bacterial inactivation. Indium tin oxide (ITO) film was used as a working electrode to observe adhesion and inactivation under electric polarization. Electric current types were classified into negative, positive, and alternating current. The working electrode acted as a cathode or anode by applying a negative or positive current, and an alternating current indicates that the negative current was combined sequentially with the positive current. The numbers of adhered cells were compared under a flow condition, and the in situ behavior of the bacterial cells and the extent of their inactivation were also investigated using time-lapse recording and live/dead staining, respectively. The application of a negative current prevented bacterial adhesion significantly (~81% at 15.0 μA cm(-2)). The positive current did not significantly inhibit adhesion (<20% at 15.0 μA cm(-2)), compared to the nonpolarized case. The alternating current had a similar effect as the negative current on preventing bacterial adhesion, but it also exhibited bactericidal effects, making it the most suitable method for bacterial adhesion control.  相似文献   
995.
Wu L  Cui Y  Hong Y  Chen S 《Microbiological research》2011,166(8):606-617
We here report the sequence and functional analysis of cstB of Azospirillum brasilense Sp7. The predicted cstB contains C-terminal two PAS domains and N-terminal part which has similarity with CheB-CheR fusion protein. cstB mutants had reduced swarming ability compared to that of A. brasilense wild-type strain, implying that cstB was involved in chemotaxis in A. brasilense. A microscopic analysis revealed that cstB mutants developed mature cyst cells more quickly than wild type, indicating that cstB is involved in cyst formation. cstB mutants were affected in colony morphology and the production of exopolysaccharides (EPS) which are essential for A. brasilense cells to differentiate into cyst-like forms. These observations suggested that cstB was a multi-effector involved in cyst development and chemotaxis in A. brasilense.  相似文献   
996.
997.
Subdivision of proliferating tissues into adjacent compartments that do not mix plays a key role in animal development. The Actin cytoskeleton has recently been shown to mediate cell sorting at compartment boundaries, and reduced cell proliferation in boundary cells has been proposed as a way of stabilizing compartment boundaries. Cell interactions mediated by the receptor Notch have been implicated in the specification of compartment boundaries in vertebrates and in Drosophila, but the molecular effectors remain largely unidentified. Here, we present evidence that Notch mediates boundary formation in the Drosophila wing in part through repression of bantam miRNA. bantam induces cell proliferation and we have identified the Actin regulator Enabled as a new target of bantam. Increased levels of Enabled and reduced proliferation rates contribute to the maintenance of the dorsal-ventral affinity boundary. The activity of Notch also defines, through the homeobox-containing gene cut, a distinct population of boundary cells at the dorsal-ventral (DV) interface that helps to segregate boundary from non-boundary cells and contributes to the maintenance of the DV affinity boundary.  相似文献   
998.
999.
Kim EJ  Park S  Hong HJ  Choi YE  Yang JW 《Bioresource technology》2011,102(24):11155-11160
In order to increase the economic feasibility of biodiesel production from microalgae, the residual biomass after biodiesel production can be utilized as biosorbent for heavy metal removal. In this study, biosorption of chromium by residual Nannochloris oculata after lipid extraction was investigated. Increased surface area of N. oculata was observed after lipid extraction. Cr(III) removal increased as the pH increased from 2 to 6, while Cr(VI) removal was highest at pH 2 and it decreased with the increase in pH. Cr(VI) was reduced to Cr(III) in the presence of biomass under acidic conditions; X-ray photoelectron spectroscopy revealed that the converted Cr(III) was bound to the biomass. Chromium removal was significantly enhanced at high chromium concentrations, which indicates that surface reactions may occur at high chromium/biomass ratios. FTIR study indicated that phosphate and carboxyl functional groups of the biomass were mainly responsible for chromium binding.  相似文献   
1000.
Liu J  Hu J  Zhong J  Luo J  Zhao A  Liu F  Hong R  Qian G  Xu ZP 《Bioresource technology》2011,102(9):5466-5472
This research investigated the calcium effect on the anaerobic treatment of fresh leachate in an expanded granular sludge bed (EGSB) bioreactor under mesophilic conditions. The observations show that the bioreactor, inoculated with anaerobic granular sludge, can be started up only in about 40 days for the treatment of calcium-containing fresh leachate with chemical oxygen demand (COD) removal efficiency above 90% and organic loading rate up to 72.84 kg COD/m3 day. The calcium accumulation onto the granules was monotonically related to the calcium concentration, accounting for 17-18 wt.% of Ca in the suspended solid in the form of calcium carbonate, phosphates/phosphonates and carboxylates. The mineral formation significantly increased the granule settling velocity (by ∼50%) and the suspended solid concentration (by ∼100%). However, the effect of calcium precipitation on the specific methanogenic activity and the CH4 production rate was complex, first positive during the start-up but later on negative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号